r h
.
] ks - "
B 17 i Do
- B u"
4 ‘,".'cl.d_‘ﬁ.
rd - - ]

M“Of
" AG.Tallin, M.Brahimi & H.J Kim

[niversity Brooklyn, N.Y., USA

: |

&
e o
I8 SR
R
1 e

ARMA models to measure damage potential in SE1S

(“u 3
“ont. Canadienne Génie Sismique

micC records

T:
ﬁBsngge with parameters chosen to fit accel e
e :

d::ihquake reclt;rdseneufaigsd ffﬂi?;lmum likelihood techni;?eg:.amsA Eafnd N ke o
:Ccelerﬂ ra::nsral Eesg)onse SpectEZCh event and used to establish staoéuist?fzalif
qalld structu ssponse spectral - From a sample of earthquakes, the mean g
variarlce of rk ginear BYo . ordinates are obtained for dam;qe Dredictirrls

1ncluding g q t P ment, ductility demand and hysteretic e
enand and compare 0 spectra based on single records. nergy

i INTRODUCTION aifceleration and velocities

with a specified probability of

fundamental element in being exceeded 1in a spec:)irf'ied

:onventlonal design for earthquakes

{g response spectra for single
jegree Of freedom systems (4,14).
o establish these spectra,
acceleration records from

particular earthquakes are used as
input to linear and nonlinear
models and response measures such

as maximum displacement are
calculated. For nonlinear
structures, the ratio of maximum

displacement to yield displacement
or ductility factor is used as a
design parameter. For any single

:ecord, the irregular response
sg:gtaa obtained are normally

e ed into tripartite 1linear
Proximations (15).
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L velocity (13).

and geological
peak

period of time are used to scale
the smoothed spectra for design
purposes (2).
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approach has a
Firsctly,

well known that peak ground motions

are weak predictors of damage for
linear and nonlinear systems (12).
Short bursts of very strong
acceleration may have little impact
on response. Realistic damage
prediction requires consideration
of the duration and frequency
content of seismic records. AsS
well, records which display mOI€
than one interval of significant
activity contaln more damage

potential than records with - &
single segment of strong activity.

For these reasons., the subjective
effective peak

acceleration and velocity have been

he combination of a set

ts 1s
of records from different even
astatistically questionable. Records

from diffe

gsecondly, t




correlation
potential and bas

as

jes such
propertilie s avants.

moment of earthguak

The purpose of the study summarizeg
in this paper is to explore the us
of ARMA models as an alternative

basis for structural response
prediction. Individual records for
an earthquake are treated as one
realization of an underlying
nonstationary random process. The
parameters of this stochastic
process are estimated from the
measured record using maximum
likelihood techniques. With these
parameters, =z sample of

dCccelerograms Corresponding to the
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generated ang

the relati : PProach
Charactey 15tf’£:h1:31; tl_ll)etween the
e .
;zizgglil:l{e Process angndegiylng
Mmage
Event can be ;
relatzaﬂlﬁ' 1t may pa DOS:itbu{iled
Process PIOperties 0f th o
S i Y PG
PaTames to bas i e eir MA
realistﬂr3 Lo Dr0v1d861m01°gical
' 3 e
mﬂpping_ approaCh to MOore
:LE&RTH haZard
StOChastic ELING

IECOIGS has b

for Some 1"1;

random PpProcess thgfﬁ-

deals with Statlog:r}ﬁ

has been used by defjp,

prOCesses f strong motion" n"“‘%
wperiod © ' dug jp

a 'gh +he process |is CONSide,, )
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;?Ehough the real PrOCess Eé
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theoretical re_sults aSSUmeH
empirical correctlons can be madé

(5).

A more real_istic APProach H
simulation which was Oriqinal}_},
developed to complement MEasyreg
records. A Conceptuelly S imp]e
approach is to combine 3 white

noise process with an APPIopriat.
filter to obtain a process witp an
acceptable power spectral densit},_
Superposition of a Series ¢
sinusolids wlith amplitl}deg
corresponding to the modifiegd Power
spectrum and random phase angles
yields a stationary process that
can be analyzed over a short pe

of strong motion.
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To simulate a truly nonstationary
stationary

process, a filtered
Process can be multiplied by a
deterministic time dependent
amplitude function. The result is a
Process with a more realistic time
variation in rms acceleration
(6,16) . Alternatively, an

evolutionary power spectrum can De
used.

application o
moving average
(ARMA) has been
(17,18). The
tic process A(t)
screte steps frof
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ical element 1in analysis 1is

tocrai; roximate the relationship
hetween the standard deviation of
the original process - the e i =
renvelope” function. To obtailn a - * FAS. 30 ( f-‘l—;_}
reasonable total number of timelsec
parameters, & relatively simple (a) El Centro NS
expression must be assumed with
constants again fitted Dby least
squares. s o :
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12 | W L

values of the orders N and M as
wll as the assumed shape of the
envelope function, the Akaike
Information Criteria (8,9) is used.
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spectra. Similar results were found
by Liu and Penzien t1l}.
Irregularities 1n the relationship
between period and standard
deviation are not unexpected since

the sample size Wwas only 20.
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For elasto-plastic systems,
ductility demand is defined as the
ratio of maximum displacement to
the yield displacement.
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Although the model generation and

li?:f’ar{teter estimation process
COmOUZEE @ number of steps, all
Putations can bpe per formed on @

mICIO cCo

for the Mputer. Software packages

Analysis are available.
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of significant activity
jod i n perhaps to the
Pzirespo?‘si‘og of several closely
cuperpos ~itations. There are both
5 ced ?xal and practical
ige ret}zns n - the number and
11'““"?2;1 values of the constants
num;; -stimated

the results
from one
smooth
spectra. i b
spectra for design
+he parameters of an ARMA
be treated as random
to account EOY the
y ‘on of any site relative to
-tential earthgquake event, the
: Eeition of two or MOIE€ shocks
' ] involved 1n

ation characteristics. Based

on experience to date, the primary
qncertainties 6 be considered

relate to the shape E_md parameters
f the envelope functions. However,
rrther studles to  .asSse3s the
censitivity of 1response £t aii
parameters and the ordexr  of the
ARMA models must Dbe completed
hefore reliable conclusions can be
drawn.
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